Isu Penyelarasan Flight Information Region di atas Wilayah Natuna

Asep Adang Supriyadi, Masita Dwi Mandini Manessa, Rudy Agus Gemilang Gultom

Abstract


Citizen sentiment is essential to evaluate the support toward government program. In 2015, Indonesian government proposed an acceleration program on re-alignment on Flight Information Region above Natuna area. Since then, primary of discussion is often be held as a formal or informal event. The data collected from 210 respondent, which consist of pilots, military staff, ATC staff, and academician. Furthermore, this study uses TF-IDW weighting technique to cluster the argument as positive, neutral, and negative sentiment. The result shows that most of Indonesia aviation community (75%) argue that FIR management should base on sovereignty and safety. Moreover, FIR issue under economic, national security and management shows significant positive respond (>90%) while FIR management under Singapore shows a negative response (100%). The result indicates that the aviation community supports the national program Natuna FIR re-alignment.


Keywords


sentiment analysis; text mining; aviation community; flight information region; Natuna

Full Text:

PDF

References


Akbar, A.S., Sediyono, E., & Nurhayati, O.D., (2016). Analisis Sentimen Berbasis Ontologi di Level Kalimat untuk Mengukur Persepsi Produk. Jurnal Sistem Informasi Bisnis, 5(2),84-97.

Ghag, K., & Shah, K., (2014). SentiTFIDF–Sentiment Classification using Relative Term Frequency Inverse Document Frequency. International Journal of Advanced Computer Science & Applications, 5(2).

Li, G., & Liu, F., 2010, November. A clustering-based approach on sentiment analysis. In Intelligent Systems and Knowledge Engineering (ISKE), (2010). International Conference on (pp. 331-337). IEEE.

Monarizqa, N., Nugroho, L.E., & Hantono, B.S., (2014). Penerapan Analisis Sentimen Pada Twitter Berbahasa Indonesia Sebagai Pemberi Rating. Jurnal Penelitian Teknik Elektro dan Teknologi Informasi, 1(3).

Pang, B. & Lee, L., (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2),1-135.

Rianto, B., (2016). Implementasi & Perbandingan Metode Prapemprosesan Pada Analisis Sentimen Gubernur DKI Jakarta Menggunakan Metode Support Vector Machine dan Naive Bayes (Doctoral dissertation, Universitas Gadjah Mada).

Rokhim, A., (2018). Implementasi Metode Term Frequency Inversed Document Frequence (Tf-Idf) dan Vector Space Model pada Aplikasi Pemberkasan Skripsi Berbasis WEB. Jurnal SPIRIT, 9(1).

Saputra, N., Adji, T.B., & Permanasari, A.E. (2015). Analisis sentimen data presiden Jokowi dengan preprocessing normalisasi dan stemming menggunakan metode naive bayes dan SVM. Jurnal Dinamika Informatika, 5(1).

Sarwono, J., Arikunto, M., & Arikunto, M.S. (2006). Metode Penelitian. Kuantitatif Kualitatif.

Yun-tao, Z., Ling, G., & Yong-cheng, W.,(2005). An improved TF-IDF approach for text classification. Journal of Zhejiang University-Science A, 6 (1), pp.49-55.




DOI: http://dx.doi.org/10.25292/j.mtl.v5i3.273

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 JURNAL MANAJEMEN TRANSPORTASI & LOGISTIK

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

JURNAL MANAJEMEN TRANSPORTASI & LOGISTIK

(ONLINE eISSN 2442-3149 | PRINT pISSN 2355-472X)

 Creative Commons Licence
Jurnal Manajemen Transportasi & Logistik is licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats